
 1 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

The NetLogger Toolkit

Brian L. Tierney (bltierney@lbl.gov)
Future Technologies Group

(http://www-didc.lbl.gov/NetLogger)
Lawrence Berkeley National Laboratory 1

Berkeley, CA 94720

1. This work is jointly supported by DARPA - ITO, and by the U. S. Dept. of Energy, Energy Research Division,
Mathematical, Information, and Computational Sciences office, under contract DE-AC03-76SF00098 with the University
of California.

 2 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

Overview
♦ The Problem:

When building high-speed network-based distributed
services, we often observe unexpectedly low network
throughput and/or high latency - the reasons for which are
usually not obvious.

The bottlenecks can be in any of the following
components:

- the applications
- the operating systems
- the device drivers, the network adapters on either the sending

or receiving host (or both)
- the network switches and routers, and so on

♦ The Solution:
Highly instrumented systems with precision timing
information and analysis tools (NetLogger)

 3 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

Outline

♦ Introduction: Performance Analysis and Monitoring
using the NetLogger Toolkit

♦ NetLogger Components:
• Event Log Generation Library
• Event Log Visualization Tools

♦ Background: The Magic Gigabit Network Testbed, the
DPSS, and TerraVision

♦ NetLogger Analysis of the DPSS

♦ Work in Progress
• Event Log Management Agents

 4 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

Motivation

There are virtually no behavioral aspects of widely
distributed applications that can be taken for granted - they
are fundamentally different from LAN-based distributed
applications.

• Techniques that work in the lab frequently do not work in a
wide-area network environment (even a testbed network)

To characterize the wide area environment we have
developed a methodology for detailed, end-to-end, top-to-
bottom monitoring and analysis of every significant event
involved in distributed systems data interchange.

• This has proven invaluable for isolating and correcting
performance bottlenecks, and even for debugging
distributed parallel code.

 5 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

♦ Network performance tools such at ttcp and netperf are
somewhat useful, but don’t model real distributed
applications, which are complex, bursty, and have more
than one connection in and/or out of a given host at one
time.

♦ To address this, we have developed the NetLog ger
Toolkit: a set of tools to aid in creating graphs that trace
a data request throughout a distributed system.

♦ This allows us to determine exactly what is happening
within this complex system.

♦ Using “life-lines” to visualize the data flow is the key to
easy interpretation of the results. (see figure)

 6 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

End Processing

Begin Processing

End Read

Begin Read

Request data
time

NetLogger Event “Life-lines”

E
ve

nt

 7 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

Netlogger Components

♦ Use a common log format

♦ Application libraries for generating NetLogger Messages
• Can send log messages to:

- file
- syslogd
- host/port (netlogd)

• C, C++ and Java are currently supported

♦ Event Visualization tools

♦ Management Agents

♦ Modified Unix network and OS monitoring tools to log
“interesting” events using the same log format

- netstat , vmstat , and tcpdump modified output results in the
NetLogger log format

 8 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger

NetLogger log format:

We are using the IETF draft standard Universal Logger
Message (ULM) format:

• a list of “field=value” pairs
• required fields: DATE, HOST, PROG, and LVL

- LVL is the severity level (Emergency, Alert, Error, Usage, etc.)
• followed by optional user defined fields

NetLogger adds these required fields:
• NL.EVNT, a unique identifier for the event being logged. i.e.:

DPSS_SERV_IN, VMSTAT_USER_TIME, NETSTAT_RETRANSSEG

• NL.SEC, and NL.USEC, which are the seconds and
microseconds from the Unix gettimeofday system call

 9 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger

Sample NetLogger ULM event:
DATE=19980430133038 HOST=foo.lbl.gov
PROG=testprog LVL=Usage NL.EVNT=SEND_DATA
NL.SEC=893968238 NL.USEC=55784 SEND.SZ=49332

This says program named testprog on host foo.lbl.gov
performed event named SEND_DATA, size = 49332 bytes, at
the time given.

User-defined data elements (any number) are used to store
information about the logged event - for example:

NL.EVNT=SEND_DATA SEND.SZ=49332

- the number of bytes of data sent
NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2

- the number of TCP retransmits since the previous
event

 10 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger

NetLogger API:

Open calls:
NLhandle *lp = NULL;

/* log to a local file */
lp = NetLoggerOpen(method, program_name, log_filename,
 NULL, 0);
/* log to syslog */
lp = NetLoggerOpen(method, program_name, NULL, NULL, 0);

/* log to “netlogd” on the specified host/port */
lp = NetLoggerOpen(method, program_name, NULL, hostname,
 DPSS_NETLOGGER_PORT);

Write the log event:
 NetLoggerWrite(lp, "EVENT_NAME", "F1=%d F2=%d F3=%d
 F4=%.2f", data1, data2, string, fdata);

 11 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger

Sample Code:
/* log to a local file */
lp = NetLoggerOpen(method, progname, log_filename, NULL, 0);

while (!done)
{
 NetLoggerWrite(lp, "EVENT_START", "TEST.SIZE=%d", size);

 /* perform the task to be monitored */
 done = do_something(data, size);

 NetLoggerWrite(lp, "EVENT_END");
}
NetLoggerClose(lp);

 12 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

Network Time Protocol

♦ For NetLogger timestamps to be meaningful, all systems
clocks must be synchronized.

♦ NTP is used to synchronize time of all hosts in the
system.

• NTP is from Dave Mills, U. of Delaware
(http://www.eecis.udel.edu/~ntp/)

• All hosts run xntpd , which synchronizes the clocks of each
host both to GPS-based time servers and to each other

• This allows us to synchronize the clocks of all hosts to
within about 250 microseconds of each other, but...

- systems have to stay up for a significant length of time for the
clocks to converge to 250 µs

- best to have a time server on the same network as all hosts
- many different sys admins (harder to synchronize than clocks)

• In practice, clock synchronization of 1ms is good enough

 13 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NTP

♦ Purpose of NTP
• conveys timekeeping information from the primary servers

to other time servers via the Internet
• cross-checks clocks and mitigates errors due to equipment

or propagation failures

♦ Must have NTP running on one or more primary servers,
and on a number of local-net hosts, acting as secondary
time servers

♦ Host time servers will synchronize via another peer time
server, based on the following timing values:
• those determined by the peer relative to the primary

reference source of standard time
• those measured by the host relative to the peer

♦ NTP provides not only precision measurements of offset and
delay, but also definitive maximum error bounds, so that the
user interface can determine not only the time, but the quality
of the time as well.

 14 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger Visualization Tools

Exploratory, interactive analysis of the log data has proven
to be the most important means of identifying problems.

We have developed a tool called nlv (NetLogger
Visualization).

nlv functionality:
• can display several types of NetLogger events at once
• user configurable: which events to plot, and the type of plot

to draw (lifeline, load-line, or point)
• play, pause, rewind, slow motion, zoom in/out, and so on
• nlv can be run post-mortem, or in “real-time”

Other NetLogger tools to analyze log files:

• perl scripts to extract information from log files

• gnuplot to graph the results

 15 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NLV

 16 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

The Distributed-Parallel Storage System (DPSS)

Background:

♦ DPSS was developed as part of the DARPA-sponsored
MAGIC Gigabit Network Testbed (see: http://
www.magic.net).

♦ The prototype high-speed application for the DPSS was
TerraVision, developed at SRI.

♦ TerraVision uses tile images and digital elevation models
to produce a 3D visualization of landscape.

♦ DARPA’s primary interest in the DPSS and TerraVision
was to stress test new ATM OC-3 (and now OC-12) WANs.

 17 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

DPSS

The DPSS is a collection of wide area distributed disk
servers which operate in parallel to provide high-speed,
logical block level access to large data sets.

♦ Operated primarily as a network-based cache

♦ Built from low-cost commodity hardware components

♦ Implementation has zero memory copies of data blocks,
and is all user level code

♦ Runs on Solaris, IRIX, DEC Unix, Linux, FreeBSD,
Solaris X86

 18 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

DPSS

Architecture for Distributed-Parallel Storage System

ATM
network
interface

DPSS disk server

ATM

workstation

data blocks

ATM switch single high
bandwidth

sink (or
source)

ATM network
(interleaved cell

streams representing
multiple virtual

circuits)

C
lie

nt
 a

pp
lic

at
io

n

A
P

I

physical block requests

ATM
network
interface

- logical name
translation

- block-level
access control

DPSS disk server
workstation

data blocks

DPSS disk server
workstation

data blocks

data fragment
streams

returned data
stream

logical block
requests

 19 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

DPSS

logical to
physical
mapping

(DPSS master)

disk servers

disk servers

disk servers

b
u
f
f
e
r

various
access

semantics
via DPSS
client API

library

c
l
i
e
n
t

DPSS

requests

data

Distributed-Parallel Storage System Model (Reading)

 20 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

DPSS

generate block
map entries

disk servers

b
u
f
f
e
r

block
placement
algorithm

c
l
i
e
n
t

DPSS model for high-speed writing

 21 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

DPSS

Typical DPSS implementation

• 4 - 5 UNIX workstations (e.g. Sun Ultra I, Pentium 200)

• 4 - 6 fast-SCSI disks on multiple 2 - 3 SCSI host adaptors

• a high-speed network (e.g.: ATM or 100 Mbit ethernet)

♦ This configuration can deliver an aggregated data
stream to an application at about 500 Mbits/s (>60 MBy/s)
using these relatively low-cost, “off the shelf”
components by exploiting the parallelism provided by
approximately five hosts, twenty disks, ten SCSI host
adaptors, and five network interfaces.

 22 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

DPSS

♦ DPSS Monitoring Points (see Figure).

 23 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

DPSS

DPSS master/
name trnslate

Writer
(output to

net)

memory block cache

- recv blk list
- search cache

disk
reader

disk
reader

disk
reader

disk
reader

DPSS Monitoring Points

Client

request blks
receive

blks

TS-8TS-1
TS-0

TS-3

TS-5

TS-6

TS-4

TS-7

TS = time stamp

DPSS disk server

TS-2

DPSS
server

DPSS
server

START
from

other disk
servers

 24 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger Analysis of the DPSS

♦ Analysis of the data block life-lines shows, e.g. (see next
figure):
A: if two lines cross in the area between start read and end

read, this indicates a read from one disk was faster than a
read from another disk

B: all the disks are the same type, the variation in read times
are due to differences in disk seek times

C: average time to move data from the memory cache into the
network interface is 8.65 ms

D: the average time in disk read queue is 5 ms
E: the average read rate from four disks is 8 MBy/sec
F: the average send rate (receiver limited, in this case) is 38.5

Mb/sec.
G: some requested data are found in the cache (were read from

disk, but not sent in previous cycle because arrival of new
request list flushes write queue)

 25 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger Analysis of the DPSS

Two server, ATM LAN

app_send

master_in

master_out

server_in

start_read

end_read

start_write

app_receive

TCP_retrans

8000 8200

B: fast disk
read:
8 ms

C: 20 block average time to write
blocks to network:

8.65 ms

D: 20 block average time spent in
read queue: 5 ms

F: time for 20 blocks to get from one server
writer to the application reader

total: 204 ms, avg: 10.2 ms
38.5 Mb/sec

B: typical
disk read:

22 ms

Time (ms)

M
on

ito
rin

g
po

in
ts

“iss3.log”

“iss2.log”

G: cache hits
(zero read

time)

E: time to read 20 blocks from three disks
total:123 ms, avg: 6.15 ms
8 MBy/sec (63.7 Mb/sec)

A

net transit

name xlate

net transit

read queue

disk read

write queue

net transit

length of the

“pipeline” (≈ 60 ms)

(current servers are more than
twice this rate)

(current
value is

about 30ms)

 26 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger Analysis of the DPSS

Two server, ATM LAN Event lifelines

server_in

start_read

end_read

read queue

disk read

and cache
search

four
parallel

disk reads
initiated

completion
of one read
triggers the
next one

B: fast disk read:
8 ms

B: typica
22fast

read

milliseconds

behavior of
one, specific
disk

 27 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger Analysis of the DPSS

Other NetLogger Results: A DPSS scaling experiment:

• 10 clients accessing 10 different data sets simultaneously

• show that all clients get an equal share of the DPSS
resources

 28 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger Analysis of the DPSS

Correct operation of 10 parallel (simultaneous) processes reading 10 different data sets from one DPSS
(each row is one process, each group is a request for 10 Mbytes of data, total = 1 GBy,1.5 TBy/day)

0
10

00
0

m
s

20
00

0
m

s
30

00
0

m
s

40
00

0
m

s
50

00
0

m
s

60
00

0
m

s

 29 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

A Case Study: TCP in the Early MAGIC Testbed

♦ The Problem:

♦ DPSS and TerraVision were working well in a LAN
environment, but failing to deliver high (even medium!)
data rates to TerraVision when we operated in the MAGIC
WAN.

♦ We suspected that the ATM switches were dropping
cells, but they reported no cell loss.

♦ Network engineers claimed that the network was working
“perfectly”.

 30 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

MAGIC

♦ TerraVision image tiles are distributed across DPSS servers
on the MAGIC network at the following sites:

- EROS Data Center, Sioux Falls, SD;
- Sprint, Kansas City, MO;
- University of Kansas, Lawrence, KS;
- SRI, Menlo Park, CA;
- LBNL, Berkeley, CA

 31 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

Performance Analysis

♦ Control test: 2 servers over ATM LAN

• each line represents the history of a data block as it moves
through the end-to-end path

• data requests are sent from the application every 200 ms
(the nearly vertical lines starting at app_send monitor point)

• initial single lines fan out as the request lists are resolved
into individual data blocks (server_in)

 32 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

Performance Analysis

app send

master in

master out

server in

start read

end read

start write

app receive

TCP retrans

TV cache in

TV cache out

8000 8200 8400 8600 8800 9000 9200

ev
en

t n
um

be
r

time (ms)

ISS/TV logs

“iss3.log”

“iss2.log”

 33 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

Performance Analysis

MAGIC WAN experiment:
♦ Three disk server configuration DPSS gave the results shown below:

♦ What we believe to be happening in this experiment is that TCP’s
normal ability to accommodate congestion is being defeated by an
unreasonable network configuration:
• the final ATM switch where the three server streams come together has a

per port output buffer of only about 13K bytes
• the network MTU (minimum transmission unit) is 9180 Bytes (as is typical

for ATM networks)
• the TCP congestion window cannot get smaller than the MTU, and

therefore TCP’s throttle-back strategy is pretty well defeated: On average,
every retransmit fails, even at TCP’s “lowest throughput” setting, because
this smallest unit of data is still too large for the network buffers

• three sets of 9 KBy IP packets are converging on a link with less than 50%
that amount of buffering available, resulting in most of the packets
(roughly 65%) being destroyed by cell loss at the switch output port

The new generation of ATM switches (e.g.: Fore LC switch modules) have much
more buffering: 32K cells (1500 KB), so these switches should not have this
problem.

 34 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

Performance Analysis

The MAGIC Network and DP SS / Application Per formance Test

Ft. Leavenworth, KS

Lawrence, KS
Kansas City,

 KS

Sioux Falls, SD

Minneapolis, MN

X
Sprint
TIOC

OC-48

O
C

-1
2

O
C-12

OC-48

Sprint
SONET
Network 70

0
K

m
.

~
15

m
s

la
te

nc
y

in
cl

ud
in

g
tw

o
AT

M
sw

itc
he

s

OC-48

ATM
switch

DPSS
(sender 3)

Receiver

DPSS
(sender 2)

DPSS
master

ATM
switch

NTP
server

DPSS
(sender 1)

NTP
server

ATM
switch

ATM
switch

 35 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

Performance Analysis

time (ms)
3,000 4,000 5,0001,000 2,0000

master in

app send

app receive

TCP retrans

master out

server in

start write

end read

start read

Three servers, ATM WAN, SS-10s as servers, tv_sim on SGI Onyx

“tvlog.edc”
“tvlog.uswest”

“tvlog.tioc”
“edc.serv_flush.log”

“tioc.serv_flush.log”

“uswest.serv_flush.log”
“edc.net.tcp.retrans.log”
“tioc.net.tcp.retrans.log”

“uswest.net.tcp.retrans.log”

 36 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger Agents (Current work)

Management of monitoring programs and event logs for
many clients connected to many distributed server
components on many hosts is quite difficult.

Our approach:

• use a collection of software agents to provide structured
access to current and historical information

Implementation:
• written in Java
• uses the KQML communication language
• uses the Java Agent Toolkit (JATLite) from Stanford

- JATLite: provides an agent framework, including
basic communication tools and templates based
upon TCP/IP and KQML messages

 37 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger Management Agents

Agent Usage:

• monitor CPU load, interrupt rate, TCP retransmissions, TCP
window size, etc.

• independently perform various administrative tasks, such as
restarting servers or monitor processes

• Monitors when a server is being accessed, and triggers the
agent monitoring of system info (e.g.: CPU load, interrupt
rate, TCP retransmissions, TCP windows size) and server
events. This reduces the amount of logging data collected.

• Collects event logs from each agent and merges them
together, sorted by time, for use by the event log
visualization tools.

The agent architecture is a crucial component for
NetLogger.

• without it management of the immense volume of log event
data that can be generated would be infeasible

 38 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger Management Agents

♦ NetLogger Agents:

• Start/Stop Logging
- vmstat and netstat

• NTP status

• Log Filtering

 39 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger Management Agents

Host
Agent

Host
Agent

Host
Agent

Host
Agent

JAT
Router

Control
Applet

Host Agent:
starts xntpdc,
vmstat, netstat,
etc.

Control Applet:
tells host agent
what to do, and
displays the
results

 40 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger Management Agents

screenshot of nl_vmstat/nl_netstat applet

 41 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

NetLogger Management Agents

 42 NetLogger.VG.fm; September 10, 1998
Brian L. Tierney
Data Intensive Distributed Computing Project

♦ For more information see:
http://www-didc.lbl.gov/NetLogger

